Functions of ultraexponential and infralogarithm types and general solution of the Abel functional equation

We propose generalized forms of ultraexponential and infralogarithm functions introduced and studied by the author earlier and present two classes of special functions, namely, ultraexponential and infralogarithm f-type functions. As a result of present investigation, we obtain general solution of t...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автор: Нооshmаnd, M.H.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2011
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/166346
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Functions of ultraexponential and infralogarithm types and general solution of the Abel functional equation / М.Н. Нооshmаnd // Український математичний журнал. — 2011. — Т. 63, № 2. — С. 281–288. — Бібліогр.: 5 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We propose generalized forms of ultraexponential and infralogarithm functions introduced and studied by the author earlier and present two classes of special functions, namely, ultraexponential and infralogarithm f-type functions. As a result of present investigation, we obtain general solution of the Abel equation α(f(x))=α(x)+1 under some conditions on a real function f and prove a new completely different uniqueness theorem for the Abel equation stating that the infralogarithm f-type function is its unique solution. We also show that the infralogarithm f-type function is an essentially unique solution of the Abel equation. Similar theorems are proved for the ultraexponential f-type functions and their functional equation β(x)=f(β(x−1)) which can be considered as dual to the Abel equation. We also solve certain problem being unsolved before, study some properties of two considered functional equations and some relations between them.