О модулях над целочисленными групповыми кольцами локально разрешимых групп с ранговыми ограничениями на подгруппы
Дослiджується ZG-модуль A такий, що Z — кiльце цiлих чисел, група G має нескiнченний секцiйний p-ранг (або нескiнченний 0-ранг), CG(A)=1, A не є мiнiмаксним Z-модулем та для кожної власної пiдгрупи H нескiнченного секцiйного p-рангу (або нескiнченного 0-рангу вiдповiдно) фактор-модуль A/CA(H) є мiнi...
Saved in:
Date: | 2011 |
---|---|
Main Author: | |
Format: | Article |
Language: | Russian |
Published: |
Інститут математики НАН України
2011
|
Series: | Український математичний журнал |
Subjects: | |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/166373 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | О модулях над целочисленными групповыми кольцами локально разрешимых групп с ранговыми ограничениями на подгруппы / О.Ю. Дашкова // Український математичний журнал. — 2011. — Т. 63, № 9. — С. 1206-1217. — Бібліогр.: 15 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSummary: | Дослiджується ZG-модуль A такий, що Z — кiльце цiлих чисел, група G має нескiнченний секцiйний p-ранг (або нескiнченний 0-ранг), CG(A)=1, A не є мiнiмаксним Z-модулем та для кожної власної пiдгрупи H нескiнченного секцiйного p-рангу (або нескiнченного 0-рангу вiдповiдно) фактор-модуль A/CA(H) є мiнiмаксним Z-модулем. Доведено, що якщо група G локально розв’язна, то група G розв’язна. Отримано деякi властивостi розв’язної групи цього типу. |
---|