Soliton trains in dispersive media
In this paper two Boussinesq-type mathematical models are described which lead to solitonic solutions. One case corresponds to microstructured solids, another case to biomembranes. The emergence of soliton trains in both cases is demonstrated by using numerical simulation. The pseudospectral method...
Saved in:
Date: | 2018 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2018
|
Series: | Физика низких температур |
Subjects: | |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/176202 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Soliton trains in dispersive media / J. Engelbrecht, T. Peets, and K. Tamm // Физика низких температур. — 2018. — Т. 44, № 7. — С. 887-892. — Бібліогр.: 34 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSummary: | In this paper two Boussinesq-type mathematical models are described which lead to solitonic solutions. One case corresponds to microstructured solids, another case to biomembranes. The emergence of soliton trains in both cases is demonstrated by using numerical simulation. The pseudospectral method guarantees the high accuracy in computing. The significance of the nonlinearities — either deformation-type or displacement-type, is demonstrated. |
---|