On higher order generalized Emden-Fowler differential equations with delay argument
In the paper the differential equation u⁽ⁿ⁾ (t) + p(t)|u(τ (t))|^(µ(t)) sign u(τ (t)) = 0, is considered. Here, we assume that n ≥ 3, p ∈ Lloc(R₊; R₋), µ ∈ C(R₊; (0, +∞)), τ ∈ C(R₊; R₊), τ (t) ≤ t for t ∈ R₊ and limt→+∞ τ (t) = +∞. In case µ(t) ≡ const > 0, oscillatory properties of equation have...
Saved in:
Date: | 2015 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2015
|
Series: | Нелінійні коливання |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/177230 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | On higher order generalized Emden-Fowler differential equations with delay argument / A. Domoshnitsky, R. Koplatadze // Нелінійні коливання. — 2015. — Т. 18, № 4. — С. 507-526 — Бібліогр.: 15 назв. — англ. |