Entire bivariate functions of unbounded index in each direction

We investigate a class of entire functions f(z₁, z₂) with property ∀b= (b₁, b₂) ∈ C² \ {0} ∀ z⁰₁, z⁰₂ ∈ C, the function f(z⁰₁ + tb₁, z⁰₂ + tb₂), as a function of one variable t ∈ C, has a bounded index but the function f(z₁, z₂) has an unbounded index in every direction b. In particular, we prove th...

Full description

Saved in:
Bibliographic Details
Date:2018
Main Authors: Bandura, A.I., Skaskiv, O.B.
Format: Article
Language:English
Published: Інститут математики НАН України 2018
Series:Нелінійні коливання
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/177337
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Entire bivariate functions of unbounded index in each direction / A.I. Bandura, O.B. Skaskiv // Нелінійні коливання. — 2018. — Т. 21, № 4. — С. 435-443 — Бібліогр.: 16 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine