Entire bivariate functions of unbounded index in each direction
We investigate a class of entire functions f(z₁, z₂) with property ∀b= (b₁, b₂) ∈ C² \ {0} ∀ z⁰₁, z⁰₂ ∈ C, the function f(z⁰₁ + tb₁, z⁰₂ + tb₂), as a function of one variable t ∈ C, has a bounded index but the function f(z₁, z₂) has an unbounded index in every direction b. In particular, we prove th...
Saved in:
Date: | 2018 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2018
|
Series: | Нелінійні коливання |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/177337 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Entire bivariate functions of unbounded index in each direction / A.I. Bandura, O.B. Skaskiv // Нелінійні коливання. — 2018. — Т. 21, № 4. — С. 435-443 — Бібліогр.: 16 назв. — англ. |