Задача оптимального керування процесом дифузії
У цій статті ми розглядаємо задачу оптимального керування процесом, який описується рівнянням дифузії. Критерій оптимальності є квадратичним із скінченною верхньою межею. Для розв’язування цієї задачі використовується метод динамічного програмування. В результаті отримано інтегродиференціальне рівня...
Saved in:
Date: | 2010 |
---|---|
Main Author: | |
Format: | Article |
Language: | Ukrainian |
Published: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2010
|
Series: | Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/18619 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Задача оптимального керування процесом дифузії / М.М. Копець // Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2010. — Вип. 3. — С. 94-98. — Бібліогр.: 2 назв. — укр. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSummary: | У цій статті ми розглядаємо задачу оптимального керування процесом, який описується рівнянням дифузії. Критерій оптимальності є квадратичним із скінченною верхньою межею. Для розв’язування цієї задачі використовується метод динамічного програмування. В результаті отримано інтегродиференціальне рівняння Ріккаті. За допомогою цього рівняння розв’язок задачі оптимального керування отримано в замкненій формі. |
---|