Enumeration of strong dichotomy patterns

We apply the version of Pólya-Redfield theory obtained by White to count patterns with a given automorphism group to the enumeration of strong dichotomy patterns, that is, we count bicolor patterns of Z2k with respect to the action of Aff(Z2k) and with trivial isotropy group. As a byproduct, a conje...

Full description

Saved in:
Bibliographic Details
Date:2018
Main Author: Agustín-Aquino, O.A.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2018
Series:Algebra and Discrete Mathematics
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/188356
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Enumeration of strong dichotomy patterns / O.A. Agustín-Aquino // Algebra and Discrete Mathematics. — 2018. — Vol. 25, № 2. — С. 165–176. — Бібліогр.: 10 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine