Enumeration of strong dichotomy patterns
We apply the version of Pólya-Redfield theory obtained by White to count patterns with a given automorphism group to the enumeration of strong dichotomy patterns, that is, we count bicolor patterns of Z2k with respect to the action of Aff(Z2k) and with trivial isotropy group. As a byproduct, a conje...
Saved in:
Date: | 2018 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2018
|
Series: | Algebra and Discrete Mathematics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/188356 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Enumeration of strong dichotomy patterns / O.A. Agustín-Aquino // Algebra and Discrete Mathematics. — 2018. — Vol. 25, № 2. — С. 165–176. — Бібліогр.: 10 назв. — англ. |