Norm of Gaussian integers in arithmetical progressions and narrow sectors
We proved the equidistribution of the Gaussian integer numbers in narrow sectors of the circle of radius x¹/² , x → ∞, with the norms belonging to arithmetic progression N(α) ≡ ℓ (mod q) with the common difference of an arithmetic progression q, q ≪ x²/³⁻ᵋ.
Збережено в:
Дата: | 2020 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2020
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/188520 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Norm of Gaussian integers in arithmetical progressions and narrow sectors / S. Varbanets, Y. Vorobyov // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 2. — С. 259–270. — Бібліогр.: 4 назв. — англ. |