Norm of Gaussian integers in arithmetical progressions and narrow sectors
We proved the equidistribution of the Gaussian integer numbers in narrow sectors of the circle of radius x¹/² , x → ∞, with the norms belonging to arithmetic progression N(α) ≡ ℓ (mod q) with the common difference of an arithmetic progression q, q ≪ x²/³⁻ᵋ.
Saved in:
Date: | 2020 |
---|---|
Main Authors: | Varbanets, S., Vorobyov, Y. |
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2020
|
Series: | Algebra and Discrete Mathematics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/188520 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Norm of Gaussian integers in arithmetical progressions and narrow sectors / S. Varbanets, Y. Vorobyov // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 2. — С. 259–270. — Бібліогр.: 4 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
General Kloosterman sums over ring of Gaussian integers
by: Varbanets, S.P.
Published: (2007) -
Distribution of arithmetical functions on some subsets of integers
by: Katai, I.
Published: (2007) -
Distribution of arithmetical functions on some subsets of integers
by: Katai, Imre
Published: (2018) -
Reflection and Refraction of a Narrow Gaussian Beam
by: Bakumenko, A. V., et al.
Published: (2013) -
On the Average Value of a Generalized Pillai Function over ℤ|i| in the Arithmetic Progression
by: P. D. Varbanets, et al.
Published: (2013)