On the lattice of weak topologies on the bicyclic monoid with adjoined zero
A Hausdorff topology τ on the bicyclic monoid with adjoined zero C⁰ is called weak if it is contained in the coarsest inverse semigroup topology on C⁰. We show that the lattice W of all weak shift-continuous topologies on C⁰ is isomorphic to the lattice SIF¹×SIF¹ where SIF¹ is the set of all shift-...
Saved in:
Date: | 2020 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2020
|
Series: | Algebra and Discrete Mathematics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/188551 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | On the lattice of weak topologies on the bicyclic monoid with adjoined zero / S. Bardyla, O. Gutik // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 26–43. — Бібліогр.: 30 назв. — англ. |