Witt equivalence of function fields of conics
Two fields are Witt equivalent if, roughly speaking, they have the same quadratic form theory. Formally, that is to say that their Witt rings of symmetric bilinear forms are isomorphic. This equivalence is well understood only in a few rather specific classes of fields. Two such classes, namely func...
Saved in:
Date: | 2020 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2020
|
Series: | Algebra and Discrete Mathematics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/188553 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Witt equivalence of function fields of conics / P. Gladki, M. Marshall // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 63–78. — Бібліогр.: 20 назв. — англ. |