Witt equivalence of function fields of conics

Two fields are Witt equivalent if, roughly speaking, they have the same quadratic form theory. Formally, that is to say that their Witt rings of symmetric bilinear forms are isomorphic. This equivalence is well understood only in a few rather specific classes of fields. Two such classes, namely func...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2020
Hauptverfasser: Gladki, P., Marshall, M.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2020
Schriftenreihe:Algebra and Discrete Mathematics
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/188553
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Witt equivalence of function fields of conics / P. Gladki, M. Marshall // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 63–78. — Бібліогр.: 20 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine