Infinite transitivity on the Calogero-Moser space C₂
We prove a particular case of the conjecture of Berest–Eshmatov–Eshmatov by showing that the group of unimodular automorphisms of C[x, y] acts in an infinitely-transitive way on the Calogero-Moser space C₂.
Saved in:
Date: | 2021 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2021
|
Series: | Algebra and Discrete Mathematics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/188709 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Infinite transitivity on the Calogero-Moser space C₂ / J. Kesten, S. Mathers, Z. Normatov // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 2. — С. 227–250. — Бібліогр.: 5 назв. — англ. |