Clean coalgebras and clean comodules of finitely generated projective modules
Let R be a commutative ring with multiplicative identity and P is a finitely generated projective R-module. If P* is the set of R-module homomorphism from P to R, then the tensor product P* ⊗R P can be considered as an R-coalgebra. Furthermore, P and P* is a comodule over coalgebra P* ⊗R P. Using t...
Saved in:
Date: | 2021 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2021
|
Series: | Algebra and Discrete Mathematics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/188710 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Clean coalgebras and clean comodules of finitely generated projective modules / N.P. Puspita, I.E. Wijayanti, B. Surodjo // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 2. — С. 251–260. — Бібліогр.: 17 назв. — англ. |