Cherenkov radiation of the electron bunch in dielectric media with frequency dispersion
Excitation of the Cherenkov electromagnetic radiation by a relativistic electron bunch in a dielectric waveguide is considered taking into account the frequency dispersion of the dielectric permittivity. Electric polarization in an isotropic dielectric medium and, accordingly, polarization charges a...
Збережено в:
Дата: | 2019 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2019
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/194619 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Cherenkov radiation of the electron bunch in dielectric media with frequency dispersion / V.A. Balakirev, I.N. Onishchenko // Problems of atomic science and technology. — 2019. — № 1. — С. 91-94. — Бібліогр.: 7 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-194619 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1946192023-11-27T21:12:26Z Cherenkov radiation of the electron bunch in dielectric media with frequency dispersion Balakirev, V.A. Onishchenko, I.N. Plasma electronics Excitation of the Cherenkov electromagnetic radiation by a relativistic electron bunch in a dielectric waveguide is considered taking into account the frequency dispersion of the dielectric permittivity. Electric polarization in an isotropic dielectric medium and, accordingly, polarization charges and currents induced by the Coulomb electric field of a relativistic electron bunch are determined. The spatial-temporal structure of the excited wakefield in a dielectric waveguide is obtained and investigated. It is shown that the excited field consists of a potential polarization electric field and a set of eigen electromagnetic waves of the dielectric waveguide. Розглядається збудження черенківського електромагнітного випромінювання релятивістським електронним згустком у діелектричному хвилеводі з урахуванням частотної дисперсії діелектричної проникності. Визначено електричну поляризацію в ізотропному діелектричному середовищі і, відповідно, поляризаційні заряди та струми, індуковані кулонівським електричним полем релятивістського електронного пучка. Отримано та досліджено просторово-часову структуру збудженого кільватерного поля в діелектричному хвилеводі. Показано, що збуджене поле складається з потенційного поляризаційного електричного поля та набору власних електромагнітних хвиль діелектричного хвилеводу. Рассматривается возбуждение черенковского электромагнитного излучения релятивистским электронным пучком в диэлектрическом волноводе с учетом частотной дисперсии диэлектрической проницаемости. Определены электрическая поляризация в изотропной диэлектрической среде и, соответственно, поляризационные заряды и токи, индуцированные кулоновским электрическим полем релятивистского электронного пучка. Получена и исследована пространственно-временная структура возбужденного волнового поля в диэлектрическом волноводе. Показано, что возбужденное поле состоит из электрического поля потенциальной поляризации и множества собственных электромагнитных волн диэлектрического волновода. 2019 Article Cherenkov radiation of the electron bunch in dielectric media with frequency dispersion / V.A. Balakirev, I.N. Onishchenko // Problems of atomic science and technology. — 2019. — № 1. — С. 91-94. — Бібліогр.: 7 назв. — англ. 1562-6016 PACS: 41.75.Lx, 41.85.Ja, 41.69.Bq http://dspace.nbuv.gov.ua/handle/123456789/194619 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Plasma electronics Plasma electronics |
spellingShingle |
Plasma electronics Plasma electronics Balakirev, V.A. Onishchenko, I.N. Cherenkov radiation of the electron bunch in dielectric media with frequency dispersion Вопросы атомной науки и техники |
description |
Excitation of the Cherenkov electromagnetic radiation by a relativistic electron bunch in a dielectric waveguide is considered taking into account the frequency dispersion of the dielectric permittivity. Electric polarization in an isotropic dielectric medium and, accordingly, polarization charges and currents induced by the Coulomb electric field of a relativistic electron bunch are determined. The spatial-temporal structure of the excited wakefield in a dielectric waveguide is obtained and investigated. It is shown that the excited field consists of a potential polarization electric field and a set of eigen electromagnetic waves of the dielectric waveguide. |
format |
Article |
author |
Balakirev, V.A. Onishchenko, I.N. |
author_facet |
Balakirev, V.A. Onishchenko, I.N. |
author_sort |
Balakirev, V.A. |
title |
Cherenkov radiation of the electron bunch in dielectric media with frequency dispersion |
title_short |
Cherenkov radiation of the electron bunch in dielectric media with frequency dispersion |
title_full |
Cherenkov radiation of the electron bunch in dielectric media with frequency dispersion |
title_fullStr |
Cherenkov radiation of the electron bunch in dielectric media with frequency dispersion |
title_full_unstemmed |
Cherenkov radiation of the electron bunch in dielectric media with frequency dispersion |
title_sort |
cherenkov radiation of the electron bunch in dielectric media with frequency dispersion |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2019 |
topic_facet |
Plasma electronics |
url |
http://dspace.nbuv.gov.ua/handle/123456789/194619 |
citation_txt |
Cherenkov radiation of the electron bunch in dielectric media with frequency dispersion / V.A. Balakirev, I.N. Onishchenko // Problems of atomic science and technology. — 2019. — № 1. — С. 91-94. — Бібліогр.: 7 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT balakirevva cherenkovradiationoftheelectronbunchindielectricmediawithfrequencydispersion AT onishchenkoin cherenkovradiationoftheelectronbunchindielectricmediawithfrequencydispersion |
first_indexed |
2025-07-16T22:00:34Z |
last_indexed |
2025-07-16T22:00:34Z |
_version_ |
1837842547175587840 |
fulltext |
PLASMA ELECTRONICS
ISSN 1562-6016. ВАНТ. 2019. №1(119)
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2019, № 1. Series: Plasma Physics (25), p. 91-94. 91
CHERENKOV RADIATION OF THE ELECTRON BUNCH IN
DIELECTRIC MEDIA WITH FREQUENCY DISPERSION
V.A. Balakirev, I.N. Onishchenko
National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine
E-mail: onish@kipt.kharkov.ua
Excitation of the Cherenkov electromagnetic radiation by a relativistic electron bunch in a dielectric waveguide is
considered taking into account the frequency dispersion of the dielectric permittivity. Electric polarization in an
isotropic dielectric medium and, accordingly, polarization charges and currents induced by the Coulomb electric
field of a relativistic electron bunch are determined. The spatial-temporal structure of the excited wakefield in a
dielectric waveguide is obtained and investigated. It is shown that the excited field consists of a potential
polarization electric field and a set of eigen electromagnetic waves of the dielectric waveguide.
PACS: 41.75.Lx, 41.85.Ja, 41.69.Bq
INTRODUCTION
Electric charge (electron bunch), moving in a
dielectric medium with a super light speed, radiates
wake electromagnetic waves – Cherenkov radiation [1,
2]. Since the wakefields in the dielectric are slow
( ,ph phv c v – phase velocity of the wave), they can be
used for acceleration charged particles. The method of
acceleration of charged particles by the wakefields
excited in a dielectric medium is very prospective and
presently much give one's attention to it. In theoretical
works devoted to this topic [3-6], as a rule, the
frequency dispersion of the dielectric permittivity of the
medium is not taken into account. In the framework of
this approximation, the permittivity is independent of
frequency and is a constant. Meanwhile, accounting of
frequency dispersion leads to a number of qualitative
features in the picture of excitation of wakefields in
dielectric media. First of all, the permittivity can be
equal to zero ( ) 0g . The frequency g
corresponds to the longitudinal (potential) polarization
oscillations of the dielectric medium. In addition, the
condition for the appearance of Cherenkov radiation, its
frequency spectrum and, in general, the wakefield field
picture in a dielectric medium change.
In this paper the process of excitation of Cerenkov
radiation of electromagnetic waves by a relativistic
electron bunch in a condensed medium, taking into
account the frequency dispersion of the dielectric
constant is investigated. For the case of a dielectric
waveguide, expressions for the wakefield fields are
obtained and studied.
FORMULATION OF THE PROBLEM.
BASIC EQUATIONS
We consider a dielectric waveguide made in the
form of a homogeneous dielectric cylinder whose lateral
surface is covered by an ideally conducting film. A
monoenergetic relativistic bunch of charged particles
propagates uniformly and rectilinearly along the
waveguide. The initial system of equations contains the
Maxwell’s equations
1 H
rotE
c t
,
ext
1 E 4
rotH j
c t c
,
extdivD 4 , divH 0 , (1)
,ext extj are densities of external charges and currents, in
our case of an electron bunch, 4D E P is electric
induction, P is vector of electrical polarization of the
dielectric medium. The Maxwell equation must be
supplemented by a material equation for the electrical
polarization of the P .
In a condensed medium, each atom is in a local
electric field
locE , which can be very different from the
macroscopic field E , which is described by Maxwell's
equations (1). The local electric field locE includes both
the external field E and the total electric field of the
induced dipoles surrounding the given atom. In a
crystalline medium with a cubic crystal lattice, the local
electric field is described by the Lorentz formula [7]
4
3
locE E P
. (2)
Taking into account the Lorentz formula (2), the
material equation (3) has the form
2 2
2
2
,d
P Ze N
P E
mt
(3)
where
2
2 2 2 2
0
4
/ 3 ,d p p
Z e N
m
is plasma
frequency, d is the frequency of the dipole
oscillations of the dielectric condensed medium, which
is lower than the frequency of the individual atomic
dipole oscillator 0 .
We shall solve the problem of exciting the wakefield
by an axisymmetric electron bunch in a dielectric
waveguide as follows. Let us first determine the field
(Green's function) of a moving charge, which has the
form of an infinitely thin ring with a charge density
0
0
0 0 0
( )1
( )
2
r r z
d dQ t t
v r v
, (4)
mailto:onish@kipt.kharkov.ua
92 ISSN 1562-6016. ВАНТ. 2019. №1(119)
where
0r is ring radius,
0t is the time of flight of an
elementary ring bunch into a waveguide, ,
0v is bunch
velocity,
0 0( , )dQ r t is the charge of particles in the ring
connected with the current density of the bunch at the
entrance to the dielectric waveguide ( 0)z 0 0 0( , )j t r
by the relation
0 0 0 0 0 0( , )2 .dQ j t r r dr dt The current
density of an elementary ring charge is related to the
charges (4) by the relation
0 ,zdj v d e
ze is unit
vector in the longitudinal direction. We expand the
values in the Fourier integrals in the Maxwell’s
equations (1) and also in the material equation (3)
, , , ,i i
G GE H E H e d P P e d
(5)
0 0/t z v t , ,G GE H is electromagnetic field
(Green's function) of elementary charge (4) and current.
From the material equation (3) we find the
expression for the Fourier component of the polarization
( ) 1
,
4
P E
(6)
where
2
2 2
( ) 1
p
d
. (7)
The system of Maxwell's equations (1), taking into
account the relations (7), is conveniently reduced to
equations for the longitudinal Fourier component of the
electric field
2
2 0
0
( )1
( )
z
z
dE r rkd i
r k E dQ
r dr dr r
, (8)
2 2 2
0 0 0( ) , / , /k k k k v k c . On the ideally
conducting side surface of the dielectric waveguide
r b , the longitudinal component of the electric field is
equal zero
( ) 0zE r b . (9)
On the surface
0r r along which the ring electron
bunch propagates, the longitudinal Fourier component
of the electric field satisfies the boundary conditions
0 0( 0) ( 0),z zE r r E r r
2
0 0
0
( )
.
( )
z z
r r r r
dE dE ki
dQ
dr dr r
(10)
The solution of equation (8) taking into account the
boundary conditions (9)-(10) has the form
2
0 0
0
( ) ( , )
( , ) ,
2 ( ) ( )
i
Gz
k G k r k ri
E r dQ d e
J k b
(11)
where
0 0( , )G k r k r =
0 0 0 0
0 0 0 0
( ) ( , ), ,
( ) ( , ), ,
J k r k r k b r r
J k r k r k b r r
0 0 0 0 0( , ) ( ) ( ) ( ) ( )k r k b J k r N k b J k b N k r .
The integrand in (11) has simple poles 0g i
2 2
g p d , located in the lower half-plane of the
complex variable and being zeros of the dielectric
constant ( ) 0 . As noted above, these poles
correspond to the excitation of longitudinal polarization
oscillations of the dielectric medium. Calculating the
residues at these poles, we find the expression for the
polarization wakefield. excited by a ring electron bunch
2
( )
0 02
0
( , ) 3 ( )cos ( , ),
ppol
Gz g p pE r dQ k r k r
v
0 0 0 0
0 0
0 0 0 00
( ) ( , ), ,1
( , )
( ) ( , ), ,( )
p p p
p p
p p pp
I k r F k r k b r r
k r k r
I k r F k r k b b r rI k b
0 0 0 0 0( , ) ( ) ( ) ( ) ( )p p p p p pF k r k b K k r I k b K k b I k r ,
where
0/ ,p gk v ( ) is unit function.
The integrand in (11) has also simple poles, which
are determined from the equations
22 2
2 2 2
0
( ) ( ) 0.n
nD
c v b
(12)
These roots determine the frequency spectrum of the
Cerenkov electromagnetic waves excited by an electron
ring bunch in a dielectric waveguide. In the spectral
equation (12),
n are the roots of the Bessel function
0 ( )J x . The spectral equation (12), taking into account
the explicit expression for the dielectric constant (7),
can be given a form more convenient for analysis
2 2 2 2
2 0 2 2
0 0
1 1
( ) ( )( ) 0,n chn stn
d
D
v
where
2 2 1
0 0 0 0(1 ) , / , , ,chn d chn stn d stnv c x x
2 2 2 2 2
0 0
1 1
( ) ( ) ,
2 4
chn n n nx b y b y y (13)
2 2 2 2 2
0 0
1 1
( ) ( ) ,
2 4
stn n n nx b y b y y (14)
2 2
0 0( 1)g gb , ,n
n g g
d
c
y
b
2 2
0 1 /p d is static permittivity of the dielectric
medium
0 ( 0) . The poles 0chn i are
also located in the lower half-plane of the complex
variable nearly the real axis. The frequencies
chn are the frequencies of the electromagnetic
waves of the dielectric waveguide, which are in the
Cerenkov synchronism 2
0 ( ) 1chn with the electron
bunch. Since these frequencies are always real, the
Cherenkov radiation of electromagnetic waves excited
by an electron bunch in a dielectric waveguide takes
place for all values of the electron bunch velocity and
parameters of the dielectric waveguide (in our case, the
values of the static dielectric constant 0 and the radius
of the waveguide b ).
In addition to the real Cherenkov poles, there are
also a pair of complex conjugate poles
stni in the
integrand (11) located on the imaginary axis. These
poles correspond to a quasi-static electromagnetic field
localized in the region of the electron bunch.
Calculating the residues at all these poles of the
integrand (11), we find the expression for the
Cherenkov electromagnetic field excited by a thin ring
electron bunch
ISSN 1562-6016. ВАНТ. 2019. №1(119) 93
( )
02
1
2
( , ) ( , ) stnem
Gz n n stn
n
dQ
E r r r sign e
b
2 ( )cosstn chn , (15)
where
2 2
2 2
n d
n
d stn
y
,
2 2
2
,d chn
chn
chn chn
2 2
2
,d chn
stn
chn stn
2 2
0
2 2
,nch d
chn
nch d
2 2
0
2 2
,stn d
chn
stn d
0 0
0 2
1
( / ) ( / )
( , ) .
( )
n n
n
n
J r b J r b
r r
J
The Cerenkov electromagnetic field includes a bipolar
field pulse which propagates in the waveguide with the
bunch velocity and localizes in the vicinity of the ring
electron bunch, as well as a set of eigen monochromatic
waves of the dielectric waveguide propagating behind
the bunch.
Let us investigate the expression for the
electromagnetic field (15) in the quasistatic
approximation 2 2
d . In this approximation, the
permittivity is independent of frequency
0ch .
Consider the most interesting case
0 0b or
0 0/v c , when the Cerenkov radiation condition is
satisfied in the static approximation. In this case, from
expressions (13), (14) we find
2
0 0
2
0 0
,
1
1 .
n gd
chn
g
stn d d g g st
v
b b
b
Accordingly, for the expression of the Cerenkov electric
field, we obtain
( )
02
10
4
( , ) ( , ) ( )cosem
Cz n chn
n
dQ
E r r r
b
2 2 2
2
0 0 0 2 2 2
1
( 1)
2
chn chn
d n
b
sign e
c
.
The amplitude and width of the quasi-static
electromagnetic pulse in the considered limiting case are
small. In the case
0 0b or 0 0/v c , when the
Cherenkov radiation condition is not satisfied in the
quasistatic approximation we have
2
0 01 ,chn d d g gb
2
0 0
.
1
n gd n
stn st
g
vy
b b
Then for the longitudinal component of the electric field
we obtain the following expression
( )
02
10
4 1
( , ) ( , )
2
stnem
Cz n
n
dQ
E r r r sign e
b
2 2 2
2
0 0 0 2 2 2 2
( 1) ( )coschn stn
ch
d n d
b
c
.
The electromagnetic field contains a set of bipolar
pulses with a characteristic width 1/ stn and a
monochromatic high-frequency wakefield with a
frequency ch and a small amplitude.
Consider an electron bunch with a current density
0 0 0 0 0 0( , ) / /b bj r t j R r r T t t , (16)
where the function 0 / bR r r describes the dependence
of the bunch density on the radius (transverse profile),
br is the characteristic transverse dimension, and the
function 0 / bT t t describes the longitudinal profile of
bunch density,
bt is the characteristic duration of the
bunch. The value
0j is related to the total charge Q by
the relation
0 * */ ( )j Q s t , where
* *,s t are the effective
area of the bunch transverse section and bunch duration.
The resulting electromagnetic field of the electron
bunch of the axisymmetric form (16) is found by
summing fields of the elementary ring charges (4)
( ) ( )( , ) ( , ) ( , )pol em
z z zE r E r E r ,
( ) 2 20
0
0 * *
1 1
( , ) 2 ( ) ( ),pol
z p pol polE r E k b P r Z
s t
0 0 0 0 02
0
4 , ( ) ( , ) ( ) .
b
pol p p
Q
E P r G k r k r R r r dr
b
0 0 0( ) / cos ( ) ,pol b gZ T t t t dt
( ) 0
0 2
1* * 1
( / )1
( , ) 2 ( )
( )
em n
z n n chn chn
n n
J r b
E r E P Z
s t J
0
0
( ) , / / ,
b
stn stn n b n bZ P R r r J r r rdr (17)
0 0 0( ) / cos ( ) ,chn b chnZ T t t t dt
0
0 0 0( ) / ( ) .stn t
stn bZ T t t sign t e dt
The electric field ( )pol
zE describes the potential
polarization field excited in the dielectric waveguide by
an electron bunch, ( )em
zE takes into account the
contribution to full field of the electromagnetic (vortex)
component of field, which is the sum of the eigen radial
harmonics of the dielectric waveguide.
Let us investigate the nature of the distribution of the
electric field in the dielectric waveguide, depending on
the shape of the bunch. First of all we consider a
symmetric bunch in the longitudinal direction, whose
density has a maximum at the entry time 0 0t and
decreases to zero at 0t , 0 0( ) ( )T t T t . In the
wave zone bt , the wakefield has the form of a set
of monochromatic waves
2 20
0
* * 0
11
( , ) 2 ( ) ( )cosz p pol g gE r E k b P r T
s t
0
2
1 1
( / )
( )cos ,
( )
n
n chn n chn chn
n n
J r b
PT
J
where
0 0 0
0
( ) 2 / cosbT T t t t dt
94 ISSN 1562-6016. ВАНТ. 2019. №1(119)
are amplitudes of the Fourier component of the function
0( / )bT t t on eigen frequencies ,g chn .
To determine the field in the volume of the
waveguide, including the region of the bunch, it is
necessary to specify specific longitudinal and transverse
density profiles. As an example, for a bunch with the
model profile 0 0/ exp /b bT t t t t we have
2 2
( ) 2 ( )cos exp( / ) ,
1
b
pol g b
g b
t
Z sign t
t
2 2
( ) 2 ( )cos exp( / ) ,
1
b
chn chn b
chn b
t
Z sign t
t
* 2 bt t . As follows from these expressions the electric
field of potential polarization oscillations, as well as the
fields of all radial harmonics, have the same structure.
Behind a bipolar solitary impulse, a monochromatic
wake eigen wave of a dielectric waveguide propagates
Amplitudes of the wakefield waves essentially depend
on the duration of the bunch. For a fixed number of
particles in the bunch, the amplitudes of wake waves are
the larger, the shorter the bunch. If more realistic
conditions 1, 1g b chn bt t are fulfilled, then the
polarization field of the electron bunch excites
noncoherence and its level is small. On the other hand,
for an electromagnetic wakefield, the electron bunch is a
completely coherent source.
The wakefield field (17) consists of a set of
electromagnetic eigen modes of the dielectric
waveguide. For Gaussian transverse profile model of the
laser pulse intensity 2 2( / ) exp / b bR r r r r we
obtained 2 2 2 2( / 4)exp / 4 n b n bP r r b . So, a finite
number of radial harmonics are efficiently excited, if
/ 2 1n br b , and 1chn bt .
CONCLUSIONS
The process of excitation of the wake Cherenkov
radiation by an electron bunch in a dielectric waveguide
is investigated. The polarization of the dielectric
medium induced by the electric field of the REB is
determined. It is shown that the excited electric field
consists of a potential field of polarization oscillations
and a set of eigen electromagnetic waves of a dielectric
waveguide.
REFERENCES
1. V.P. Zrelov. Vavilov-Cherenkov radiation and its
application in physics of high energy. M.: “Atomizdat”,
1968.
2. D.V. Dgelli. Cherenkov radiation // UFN. 1956, v. 58,
№ 2, p. 231-283.
3. I.N. Onishchenko, V.A. Kiselev, A.F. Linnik,
G.V. Sotnikov. Concept of dielectric wakefield
accelerator driven by a long sequence of electron
bunches // Proc. IPAC2013, Shanghai, China
TUPEA056. 2013, p. 12569-1261.
4. V. Kiselev, A. Linnik, V. Mirny, N. Zemliansky,
R. Kochergov, I. Onishchenko, G. Sotnikov,
Ya. Fainberg. Dielectric wake-field generator // Proc. of
BEAMS’98, Haifa, Israel, June 7-12, 1998, v. II, p. 756-
759.
5. I.N. Onishchenko, G.V. Sotnikov. Synchronization of
wakefield modes in the dielectric resonator // Technical
Physics. 2008, v. 53, № 10, p. 1344-1349.
6. V.A. Balakirev, I.N. Onishchenko, D.Y. Sidorenko,
G.V. Sotnikov. Charged particles accelerated by wake
fields in a dielectric resonator with exciting electron
bunch channel // Technical Physics Letters. 2003, v.29,
№ 7, p. 589-591.
7. C. Kittel. Introduction to solid statу physics. М.:
“Science”, 1978, 791 p.
Article received 28.09.2018
ЧЕРЕНКОВСКОЕ ИЗЛУЧЕНИЕ ЭЛЕКТРОННОГО СГУСТКА В ДИЭЛЕКТРИЧЕСКОЙ СРЕДЕ
С ЧАСТОТНОЙ ДИСПЕРСИЕЙ
В.А. Балакирев, И.Н. Онищенко
Рассматривается возбуждение черенковского электромагнитного излучения релятивистским
электронным пучком в диэлектрическом волноводе с учетом частотной дисперсии диэлектрической
проницаемости. Определены электрическая поляризация в изотропной диэлектрической среде и,
соответственно, поляризационные заряды и токи, индуцированные кулоновским электрическим полем
релятивистского электронного пучка. Получена и исследована пространственно-временная структура
возбужденного волнового поля в диэлектрическом волноводе. Показано, что возбужденное поле состоит из
электрического поля потенциальной поляризации и множества собственных электромагнитных волн
диэлектрического волновода.
ЧЕРЕНКІВСЬКЕ ВИПРОМIНЮВАННЯ ЕЛЕКТРОННОГО ЗГУСТКА В ДIЕЛЕКТРИЧНОМУ
СЕРЕДОВИЩI З ЧАСТОТНОЮ ДИСПЕРСIЄЮ
В.А. Балакiрев, I.М. Онiщенко
Розглядається збудження черенківського електромагнітного випромінювання релятивістським
електронним згустком у діелектричному хвилеводі з урахуванням частотної дисперсії діелектричної
проникності. Визначено електричну поляризацію в ізотропному діелектричному середовищі і, відповідно,
поляризаційні заряди та струми, індуковані кулонівським електричним полем релятивістського
електронного пучка. Отримано та досліджено просторово-часову структуру збудженого кільватерного поля
в діелектричному хвилеводі. Показано, що збуджене поле складається з потенційного поляризаційного
електричного поля та набору власних електромагнітних хвиль діелектричного хвилеводу.
javascript:void(0)
javascript:void(0)
javascript:void(0)
|