On differentiability of solution to stochastic differential equation with fractional Brownian motion
Stochastic differential equation with pathwise integral with respect to fractional Brownian motion is considered. For solution of such equation, under different conditions, the Malliavin differentiability is proved. Under infinite differentiability and boundedness of derivatives of the cofficients i...
Gespeichert in:
Datum: | 2007 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2007
|
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/4493 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | On differentiability of solution to stochastic differential equation with fractional Brownian motion / Yu.S. Mishura, G.M. Shevchenko // Theory of Stochastic Processes. — 2007. — Т. 13 (29), № 1-2. — С. 243-250. — Бібліогр.: 10 назв.— англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | Stochastic differential equation with pathwise integral with respect to fractional Brownian motion is considered. For solution of such equation, under different conditions, the Malliavin differentiability is proved. Under infinite differentiability and boundedness of derivatives of the cofficients it is proved that the solution is infinitely differentiable in the Malliavin sense with all derivatives bounded. |
---|