Comparing the efficiency of estimates in concrete errors-in-variables models under unknown nuisance parameters

We consider a regression of y on x given by a pair of mean and variance functions with a parameter vector θ to be estimated that also appears in the distribution of the regressor variable x. The estimation of θ is based on an extended quasi score (QS) function. Of special interest is the case where...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автори: Kukush, A., Malenko, A., Schneeweiss, H.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/4514
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Comparing the efficiency of estimates in concrete errors-in-variables models under unknown nuisance parameters / A. Kukush, A. Malenko, H. Schneeweiss // Theory of Stochastic Processes. — 2007. — Т. 13 (29), № 4. — С. 69–81. — Бібліогр.: 11 назв.— англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We consider a regression of y on x given by a pair of mean and variance functions with a parameter vector θ to be estimated that also appears in the distribution of the regressor variable x. The estimation of θ is based on an extended quasi score (QS) function. Of special interest is the case where the distribution of x depends only on a subvector α of θ, which may be considered a nuisance parameter. A major application of this model is the classical measurement error model, where the corrected score (CS) estimator is an alternative to the QS estimator. Under unknown nuisance parameters we derive conditions under which the QS estimator is strictly more аfficient than the CS estimator. We focus on the loglinear Poisson, the Gamma, and the logit model.