Bounds for a sum of random variables under a mixture of normals
In two papers: Dhaene et al. (2002). Insurance: Mathematics and Economics 31, pp.3-33 and pp. 133-161, the approximation for sums of random variables (rv’s) was derived for the case where the distribution of the components is lognormal and known, but the stochastic dependence structure is unknown or...
Gespeichert in:
Datum: | 2007 |
---|---|
Hauptverfasser: | Kukush, A., Pupashenko, M. |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2007
|
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/4515 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Bounds for a sum of random variables under a mixture of normals / A. Kukush, M. Pupashenko // Theory of Stochastic Processes. — 2007. — Т. 13 (29), № 4. — С. 82–97. — Бібліогр.: 3 назв.— англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
On sums of overlapping products of independent Bernoulli random variables
von: Csörgö, S., et al.
Veröffentlicht: (2000) -
Modeling of perforated random variables on the basis of mixtures of shifted distributions
von: A. I. Krasilnikov
Veröffentlicht: (2018) -
On the application of strong approximation to weak convergence of products of sums for dependent random variables
von: Matuła, P., et al.
Veröffentlicht: (2008) -
Sample estimation of distribution parameters if upper and lower bounds of random variable are known
von: Barannik, V.O.
Veröffentlicht: (2015) -
Upper bound on correlation sum for three indicators under absence of common factor
von: A. S. Balabanov
Veröffentlicht: (2019)