On the equivalence of integral norms on the space of measurable polynomials with respect to a convex measure
We prove that, for a convex product-measure μ on a locally convex space, for any set A of positive measure, on the space of measurable polynomials of degree d, all Lp(μ)-norms coincide with the norms obtained by restricting μ to A.
Saved in:
Date: | 2008 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2008
|
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/4531 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | On the equivalence of integral norms on the space of measurable polynomials with respect to a convex measure / V. Berezhnoy // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 1. — С. 7–10. — Бібліогр.: 6 назв.— англ. |