Kinetic equations for the pseudospin model with barriers

A new formalization of Glauber method is developed and applied to the pseudospin model with barriers. Kinetic equations are derived for this model and numeric solutions in simplest approximations are obtained. Relaxation and kinetic properties of the model are shown to depend on the barrier value as...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автор: Kovarskii, V.L.
Формат: Стаття
Мова:English
Опубліковано: Донецький фізико-технічний інститут ім. О.О. Галкіна НАН України 2012
Назва видання:Физика и техника высоких давлений
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/69531
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Kinetic equations for the pseudospin model with barriers / V.L. Kovarskii // Физика и техника высоких давлений. — 2012. — Т. 22, № 1. — С. 14-24. — Бібліогр.: 12 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:A new formalization of Glauber method is developed and applied to the pseudospin model with barriers. Kinetic equations are derived for this model and numeric solutions in simplest approximations are obtained. Relaxation and kinetic properties of the model are shown to depend on the barrier value as well on the heatingcooling rate. Heating-cooling cycles reveal hysteresis. The relaxation times are determined by the temperature and the barrier value. The relaxation time for the structural order parameter Sz possesses two vertical asymptotes: the first one caused by phase transition, and the second one determined by slowing kinetics at low temperatures.