Секвенціальні системи виведення для багатозначних логік

В цій роботі представлено, як можна побудувати секвенціальні числення без структурних правил (але з допустимими структурними правилами) для довільних пропозиційних скінченнозначних логік з визначником рівності (тобто скінченною множиною унарних похідних пропозиційних зв’язок...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2003
1. Verfasser: Пинько, О.П.
Format: Artikel
Sprache:Ukrainian
Veröffentlicht: Інститут проблем математичних машин і систем НАН України 2003
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/731
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Секвенціальні системи виведення для багатозначних логік / Пинько О.П. // Математичні машини і системи. – 2003. – № 2. – С. 166 – 174.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:В цій роботі представлено, як можна побудувати секвенціальні числення без структурних правил (але з допустимими структурними правилами) для довільних пропозиційних скінченнозначних логік з визначником рівності (тобто скінченною множиною унарних похідних пропозиційних зв’язок зі спеціальною властивістю). Такі числення складаються з аксіом, до яких належать тільки літери, та оборотних правил виведення, які вводять комплекси пропозиційних зв’язок. Інтерпретуючи секвенції атомарними формулами першого порядку, ми відзначаємо, що зазначені числення можна інтерпретувати точними універсальними Хорновськими теоріями. При цьому процедура цілеспрямованого виведення для даних теорій, що реалізована в таких системах програмування, як АПС або Пролог, імітує процедуру оберненого виведення в зазначених численнях. Бібліогр.: 16 назв.