Development and application of metal contacts on polycrystalline diamond films using combination of HF and arc plasma sources

In this paper, the technology of application of ohmic contacts using arc discharge assisted by HF field was developed for semiconductor radiation detectors production. Polycrystalline diamond material for production of detectors was synthesized by chemical vapor deposition method (CVD) in NSC KIPT....

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Muratov, R.M., Vierovkin, A.A., Kutny, V.E., Nezovibat’ko, Yr.N., Rybka, A.V., Taran, V.S.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2014
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/81960
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Development and application of metal contacts on polycrystalline diamond films using combination of HF and arc plasma sources / R.M. Muratov, A.A. Vierovkin, V.E. Kutny, Yr.N. Nezovibat’ko, A.V. Rybka, V.S. Taran // Вопросы атомной науки и техники. — 2014. — № 6. — С. 233-236. — Бібліогр.: 4 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-81960
record_format dspace
spelling irk-123456789-819602015-05-23T03:01:50Z Development and application of metal contacts on polycrystalline diamond films using combination of HF and arc plasma sources Muratov, R.M. Vierovkin, A.A. Kutny, V.E. Nezovibat’ko, Yr.N. Rybka, A.V. Taran, V.S. Низкотемпературная плазма и плазменные технологии In this paper, the technology of application of ohmic contacts using arc discharge assisted by HF field was developed for semiconductor radiation detectors production. Polycrystalline diamond material for production of detectors was synthesized by chemical vapor deposition method (CVD) in NSC KIPT. Bilayer contacts were deposited on polycrystalline CVD (pCVD) diamond films, where the first layer was chromium, and the second layer – copper or stainless steel respectively. Electro-physical characteristics of pCVD diamond detectors with different contact materials were studied. Представлена технология нанесения омических контактов с помощью дугового разряда с ассистирован-ным ВЧ-полем для полупроводниковых датчиков ионизирующего излучения. Поликристаллический алмазный материал для производства детекторов был синтезирован методом химического осаждения из газовой фазы (CVD) в ННЦ ХФТИ. Двухслойные контакты наносились на pCVD-алмазные пленки, первый слой состоял из хрома, а второй – из меди или нержавеющей стали соответственно. Исследованы электрофизические характеристики детекторов на основе поликристаллического алмаза с разным материалом контактов. Представлена технологія нанесення омічних контактів за допомогою дугового розряду з асистированим ВЧ-полем для напівпровідникових датчиків іонізуючого випромінювання. Полікристалічний алмазний матеріал для виробництва детекторів був синтезований методом хімічного осадження з парової фази (CVD) в ННЦ ХФТІ. Двошарові контакти наносилися на pCVD-алмазні плівки, перший шар був з хрому, а другий – з міді або нержавіючої сталі відповідно. Досліджено електрофізичні характеристики детекторів на основі полікристалічного алмазу з різним матеріалом контакту. 2014 Article Development and application of metal contacts on polycrystalline diamond films using combination of HF and arc plasma sources / R.M. Muratov, A.A. Vierovkin, V.E. Kutny, Yr.N. Nezovibat’ko, A.V. Rybka, V.S. Taran // Вопросы атомной науки и техники. — 2014. — № 6. — С. 233-236. — Бібліогр.: 4 назв. — англ. 1562-6016 PACS: 52.77.-j, 52.77Dq http://dspace.nbuv.gov.ua/handle/123456789/81960 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Низкотемпературная плазма и плазменные технологии
Низкотемпературная плазма и плазменные технологии
spellingShingle Низкотемпературная плазма и плазменные технологии
Низкотемпературная плазма и плазменные технологии
Muratov, R.M.
Vierovkin, A.A.
Kutny, V.E.
Nezovibat’ko, Yr.N.
Rybka, A.V.
Taran, V.S.
Development and application of metal contacts on polycrystalline diamond films using combination of HF and arc plasma sources
Вопросы атомной науки и техники
description In this paper, the technology of application of ohmic contacts using arc discharge assisted by HF field was developed for semiconductor radiation detectors production. Polycrystalline diamond material for production of detectors was synthesized by chemical vapor deposition method (CVD) in NSC KIPT. Bilayer contacts were deposited on polycrystalline CVD (pCVD) diamond films, where the first layer was chromium, and the second layer – copper or stainless steel respectively. Electro-physical characteristics of pCVD diamond detectors with different contact materials were studied.
format Article
author Muratov, R.M.
Vierovkin, A.A.
Kutny, V.E.
Nezovibat’ko, Yr.N.
Rybka, A.V.
Taran, V.S.
author_facet Muratov, R.M.
Vierovkin, A.A.
Kutny, V.E.
Nezovibat’ko, Yr.N.
Rybka, A.V.
Taran, V.S.
author_sort Muratov, R.M.
title Development and application of metal contacts on polycrystalline diamond films using combination of HF and arc plasma sources
title_short Development and application of metal contacts on polycrystalline diamond films using combination of HF and arc plasma sources
title_full Development and application of metal contacts on polycrystalline diamond films using combination of HF and arc plasma sources
title_fullStr Development and application of metal contacts on polycrystalline diamond films using combination of HF and arc plasma sources
title_full_unstemmed Development and application of metal contacts on polycrystalline diamond films using combination of HF and arc plasma sources
title_sort development and application of metal contacts on polycrystalline diamond films using combination of hf and arc plasma sources
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2014
topic_facet Низкотемпературная плазма и плазменные технологии
url http://dspace.nbuv.gov.ua/handle/123456789/81960
citation_txt Development and application of metal contacts on polycrystalline diamond films using combination of HF and arc plasma sources / R.M. Muratov, A.A. Vierovkin, V.E. Kutny, Yr.N. Nezovibat’ko, A.V. Rybka, V.S. Taran // Вопросы атомной науки и техники. — 2014. — № 6. — С. 233-236. — Бібліогр.: 4 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT muratovrm developmentandapplicationofmetalcontactsonpolycrystallinediamondfilmsusingcombinationofhfandarcplasmasources
AT vierovkinaa developmentandapplicationofmetalcontactsonpolycrystallinediamondfilmsusingcombinationofhfandarcplasmasources
AT kutnyve developmentandapplicationofmetalcontactsonpolycrystallinediamondfilmsusingcombinationofhfandarcplasmasources
AT nezovibatkoyrn developmentandapplicationofmetalcontactsonpolycrystallinediamondfilmsusingcombinationofhfandarcplasmasources
AT rybkaav developmentandapplicationofmetalcontactsonpolycrystallinediamondfilmsusingcombinationofhfandarcplasmasources
AT taranvs developmentandapplicationofmetalcontactsonpolycrystallinediamondfilmsusingcombinationofhfandarcplasmasources
first_indexed 2025-07-06T07:46:04Z
last_indexed 2025-07-06T07:46:04Z
_version_ 1836882826864099328
fulltext ISSN 1562-6016. ВАНТ. 2014. №6(94) PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2014, №6. Series: Plasma Physics (20), p. 233-236. 233 DEVELOPMENT AND APPLICATION OF METAL CONTACTS ON POLYCRYSTALLINE DIAMOND FILMS USING COMBINATION OF HF AND ARC PLASMA SOURCES R.M. Muratov, A.A. Vierovkin, V.E. Kutny, Yr.N. Nezovibat’ko, A.V. Rybka, V.S. Taran NSC ”Kharkov Institute of Physics and Technology”, Kharkov, Ukraine E-mail: vtaran@ ipp.kharkov.ua In this paper, the technology of application of ohmic contacts using arc discharge assisted by HF field was de- veloped for semiconductor radiation detectors production. Polycrystalline diamond material for production of detec- tors was synthesized by chemical vapor deposition method (CVD) in NSC KIPT. Bilayer contacts were deposited on polycrystalline CVD (pCVD) diamond films, where the first layer was chromium, and the second layer – copper or stainless steel respectively. Electro-physical characteristics of pCVD diamond detectors with different contact mate- rials were studied. PACS: 52.77.-j, 52.77Dq, INTRODUCTION In recent years, the problem of the development of highly portable dosimeters and spectrometric instru- ments for radiation monitoring is extremely important. Semiconductor materials are being increasingly used as sensitive elements in such devices instead of scintilla- tion and gas detectors [1-3]. Detecting and electrical characteristics of such struc- tures depend on the properties of the semiconductor material, and the properties of the metal-semiconductor layer as well as of the manufacturing method. The semiconductor detector consists of two metal contacts applied on its opposite sides forming metal- semiconductor-metal structure. Electro-physical and detecting characteristics of such structure depend both on properties of the semiconductor material, metal- semiconductor layer and the method of contact deposi- tion. Ohmic contacts are intended for connection of the semiconductor to readout electronics, therefore they have to possess continuous and extremely low re- sistance. Thus, research of possibility of improvement of the electro-physical and detecting characteristics of metal- semiconductor-metal structures with ohmic contacts is an actual task for effective registration of irradiations. Metal contacts also carry out a sheeting role and they have to be almost pore-free. In the present activity, the coatings on the basis of Cr, Cu and stainless steel were applied to metal contacts. In this paper, the technology of application of ohmic contacts using arc-discharge assisted by HF field was developed for semiconductor detectors production. 1. EXPERIMENTAL SETUP The application of coatings was carried out on Bulat-6 type device, additionally equipped with a high- frequency generator [4]. Fig. 1 schematically shows the device for HF-cleaning and ion-plasma assisted deposi- tion. Fig. 1. Experimental device: 1 – vacuum chamber; 2 – rotator; 3 – redactor; 4 – capacitor; 5 – HF-generator; 6 – arc power source; 7 – substrate-container; 8 – HF antenna; 9 – focusing coil; 10 – anode; 11 – stabilizing coil For HF cleaning (Fig. 2) and subsequent deposition, the samples were placed in a fluoroplastic holder, joint- ly with the masks of PTFE or aluminum foils in titani- um polyacetal special container. The sample container and the electrode with HF coils are mounted on a rotating device in the center of the vacuum chamber against the arc evaporator. Rotat- ing table was connected to the HF generator via a capac- itance. The advantages of plasma method of ion clean- ing is in its uniformity allowed processing of details of a difficult form, and simplicity of technical realization At the same time, during application of dielectrics with assisted HF potential, it is possible to eliminate the accumulation of over-discharge-surface and hence inhi- bition of ions that occurs at long constant-displacement potentials. An important fact is a decrease of droplet- fraction formations during application. 234 ISSN 1562-6016. ВАНТ. 2014. №6(94) Fig .2. Finishing ion cleaning with HF-generator in Ar at PAr= (1…5)·10 -1 Pa, Ucm HF = (‑0.7…1) kV During HF-plasma generation with closed HF- output, the resulting signal consists of three compo- nents: sinusoidal voltage, positive and negative shifts. The negative shift rate is almost equal to HF- amplitude. 0 5 10 15 20 0 20 40 60 80 100 te m p e ra tu re ( 0 C ) time (min) HF-cleaning Fig. 3. Samples temperature during coatings applica- tion The cleaning process starts with the start of the rota- ry apparatus, neutral Ar gas inlet and supplying HF voltage to the target (sample container, HF-coil). Aproximate cleaning mode: the shifting voltage Us = -(700….900) V; pressure. The cleaning took 3…5 minutes, and temperature was not higher than 60 o C (Fig. 3). The application of coatings starts immediately after cleaning. A characteristic feature is pulsed operation of the evaporator on a particular program. The plasma ion method lead to heating the substrate (container with the sample) up to a temperature above permissible, there- fore, there was designed a pulse mode of operation of the evaporator with switched HF voltage (assisted sput- tering). In such a mode the temperature do not exceed 120 o C (Fig. 4). The coatings thickness was 0.2….0.3 µm. Parameters for coatings applying: arc current – 100 A; pulsed evaporator mode - 2 min, pause duration – 3 min, the number of cycles - 10; the shift voltage – 100 V; focusing coil current - 1.4 A; frequency of HF generator – 5 MHz. The total time of the coating is determined on the basis of the required thickness of the contact area (200…450 nm). 0 5 10 15 20 25 30 0 20 40 60 80 100 120 te m p e ra tu re ( 0 C ) time (min) HF-cleaning and Cu arc Fig. 4. The temperature of the samples during applying coatings Fig. 5. Images of droplet fractions with (a) – arc plasma source; (b) – arc plasma source and assisted HF field To determine the thickness of the coatings we use sev- eral “screens” (glass or glass-ceramics), the thickness of the coatings were determined with the help of "MII-2" device and profilometer “HOMMEL TESTER T500”. It should be noted that the application of the HF coil for cleaning, increased sputtering rate of the target due to additional ionization. Combination of plasma arc discharge with HF dis- charge significantly increases the adhesion of the film, helps to seal texture coating and significantly reduces droplets formation (Fig. 5). 2. RESULTS AND DISCUSSION The study of detector’s electro-physical properties was carried out by measuring the current-voltage char- acteristics and registering the pulse-height distributions of the detector signal under α irradiation from uncollimated 239 Pu source on the open air. For measur- ing the current-voltage characteristics we employed Keithley 6487 picoammeter as a displacement voltage source and a measuring device. The spectrometric measuring system consisted of a preamplifier, a shaping amplifier Canberra 2026, high-voltage source Canberra 3106D, multichannel analyzer Canberra Multiport II and computer with Genie2000 software. Conventional incoming control for pCVD diamond samples consists of magnetron sputtering of Au contact with the follow- ing study of electro-physical properties. The pulse- height distributions of the detector signal under α irradi- ation from 239 Pu source for detectors with different con- tact materials (Cr, Au) are shown in Fig. 6. а b ISSN 1562-6016. ВАНТ. 2014. №6(94) 235 These distributions could be considered to be equal; the existing differences are within the reproducibility of the experiment. Based on these results, in further exper- iments Cr was used as a main contact material for de- veloping CVD diamond detectors, because of its signifi- cantly greater adhesion to the rough surface of unpol- ished pCVD diamond. Fig. 6. The pulse-height distributions of the detector signal under α irradiation from 239 Pu source for differ- ent contact materials (Au, Cr) The main purpose of depositing bilayer contacts is solving the problem of connecting detector to the readout electronics in the operating conditions, when heating above T=120 C is possible, because at this tem- perature the degradation of conductive adhesive contact occurs. One of solutions of this problem is the connection to readout electronics by soldering. Bilayer contacts were deposited on pCVD diamond films, where the first layer was chromium, and the second layer – copper or stain- less steel respectively. The current-voltage characteristics for detectors with different bilayer contacts in the voltage range -2…+2 V are shown in Fig. 7. Linear character of current-voltage curve in low voltages area is the evidence of obtainment the ohmic contact with selected method. Stainless steel is more resistant to environmental influences material in com- parison with copper, so copper as the material for the second layer of metal contact for further manufacturing of pCVD diamond detectors wasn’t used. The typical pulse-height distributions of the detector signal under α irradiation from 239 Pu source for detectors with bilayer metal contacts (Cr-stainless steel) are shown in Fig. 8. Fig. 7. The current-voltage characteristics for bilayer contacts (Cr-Cu, Cr-stainless steel) Fig. 8. The pulse-height distributions of the detector signal under α irradiation from 239 Pu source (Cr- stainless steel metal cotacts) CONCLUSIONS The technology for application of metal contacts on pCVD diamond samples was developed with combina- tion of high frequency and arc plasma sources. Detec- tors of ionizing radiation have been constructed. For electrical contacts - Cr, Cu and stainless steel were pro- posed. Coating in vacuum-arc setting with high- frequency field to assisted allowed to apply coatings on dielectric samples at low temperatures - up to 150 o C. The method allows adjusting the thickness of different metals deposited to 1.5 microns. In addition, it gives the opportunity to increase the adhesion and to achieve a high density and pore-free coatings. Electro-physical characteristics of pCVD diamond detectors were studied by measuring the current - volt- age characteristics and registering the pulse-height dis- tributions of the detector signal under α irradiation from uncollimated 239 Pu source on the open air. At present time pCVD diamond detectors with bilayer metal con- tacts are tested in “Accelerator” Science and Research Establishment of NSC KIPT. REFERENCES 1. V.E. Kutny, D.V.E. Kutny, A.V Rybka, A.A. Vierovkin, et al. // PAST. Series “Vacuum, pure materials, superconductors” (17). 2008, № 1, p. 123- 128. 2. L.N. Davydov, A.V. Rybka, A.A. Vierovkinetal, et al. Registration of high-intensity electron and X-ray fields with polycrystalline CVD diamond detectors // Proc. of SPIE. 2012, v. 8507, p. 85071N-1. 3. D. Raylli, N. Ensslin, H. Smit, S. Krayner. Passive non-destructive analysis of nuclear materials // Transl. from English. M.: "Binom", 2000, p. 720. 4. V. Tereshin, A. Bandura, V. Byrka, V. Chebоtarev, I. Garkusha, O. Shvets, V. Taran. Coating deposition and surface modification under combined plasma processing // Vacuum. 2004, v. 73, p. 555-560. Article received 29.10.2014 236 ISSN 1562-6016. ВАНТ. 2014. №6(94) РАЗРАБОТКА И НАНЕСЕНИЕ МЕТАЛЛИЧЕСКИХ КОНТАКТОВ НА ПОЛИКРИСТАЛЛИЧЕСКИЕ АЛМАЗНЫЕ ПЛЕНКИ С ИСПОЛЬЗОВАНИЕМ КОМБИНАЦИИ ВЧ- И ДУГОВОГО ПЛАЗМЕННЫХ ИСТОЧНИКОВ Р.М. Муратов, А.А. Веревкин, В.Е. Кутний, Ю.Н. Незовибатько, А.В. Рыбка, В.С. Таран Представлена технология нанесения омических контактов с помощью дугового разряда с ассистирован- ным ВЧ-полем для полупроводниковых датчиков ионизирующего излучения. Поликристаллический алмаз- ный материал для производства детекторов был синтезирован методом химического осаждения из газовой фазы (CVD) в ННЦ ХФТИ. Двухслойные контакты наносились на pCVD-алмазные пленки, первый слой состоял из хрома, а второй – из меди или нержавеющей стали соответственно. Исследованы электро- физические характеристики детекторов на основе поликристаллического алмаза с разным материалом кон- тактов. РОЗРОБКА Й НАНЕСЕННЯ МЕТАЛЕВИХ КОНТАКТІВ НА ПОЛІКРИСТАЛІЧНІ АЛМАЗНІ ПЛІВКИ З ВИКОРИСТАННЯМ КОМБИНАЦІЇ ВЧ- І ДУГОВОГО ПЛАЗМОВИХ ДЖЕРЕЛ Р.М. Муратов, O.A. Вєрьовкін, В.Є. Кутній, Ю.М. Незовибатько, А.В. Рибка, В.С. Таран Представлена технологія нанесення омічних контактів за допомогою дугового розряду з асистированим ВЧ-полем для напівпровідникових датчиків іонізуючого випромінювання. Полікристалічний алмазний ма- теріал для виробництва детекторів був синтезований методом хімічного осадження з парової фази (CVD) в ННЦ ХФТІ. Двошарові контакти наносилися на pCVD-алмазні плівки, перший шар був з хрому, а другий – з міді або нержавіючої сталі відповідно. Досліджено електрофізичні характеристики детекторів на основі по- лікристалічного алмазу з різним матеріалом контакту.