A signal regularity-based automated seizure prediction algorithm using long-term scalp EEG recordings
The purpose of this study was to evaluate a signal regularity-based automated seizure prediction algorithm for scalp EEG. Signal regularity was quantified using the Pattern Match Regularity Statistic (PMRS), a statistical measure. The primary feature of the prediction algorithm is the degree of conv...
Gespeichert in:
Datum: | 2011 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2011
|
Schriftenreihe: | Кибернетика и системный анализ |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/84219 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | A signal regularity-based automated seizure prediction algorithm using long-term scalp EEG recordings / Ch. Jui-Hong, Sh. Deng-Shan, J.J. Halford, K.M. Kelly, R.T. Kern, M.C.K. Yang, Zh. Jicong, J.Ch. Sackellares, P.M. Pardalos // Кибернетика и системный анализ. — 2011. — Т. 47, № 4. — С. 95-107. — Бібліогр.: 41 назв. — рос. |