On Transitive Systems of Subspaces in a Hilbert Space

Methods of *-representations in Hilbert space are applied to study of systems of n subspaces in a linear space. It is proved that the problem of description of n-transitive subspaces in a finite-dimensional linear space is *-wild for n ≥ 5.

Saved in:
Bibliographic Details
Date:2006
Main Authors: Moskaleva, Y.P., Samoilenko, Y.S.
Format: Article
Language:English
Published: Інститут математики НАН України 2006
Series:Symmetry, Integrability and Geometry: Methods and Applications
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:On Transitive Systems of Subspaces in a Hilbert Space / Y.P. Moskaleva, Y.S. Samoilenko // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 12 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Methods of *-representations in Hilbert space are applied to study of systems of n subspaces in a linear space. It is proved that the problem of description of n-transitive subspaces in a finite-dimensional linear space is *-wild for n ≥ 5.