Integrable String Models in Terms of Chiral Invariants of SU(n), SO(n), SP(n) Groups
We considered two types of string models: on the Riemmann space of string coordinates with null torsion and on the Riemman-Cartan space of string coordinates with constant torsion. We used the hydrodynamic approach of Dubrovin, Novikov to integrable systems and Dubrovin solutions of WDVV associativi...
Gespeichert in:
Datum: | 2008 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2008
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Integrable String Models in Terms of Chiral Invariants of SU(n), SO(n), SP(n) Groups / V.D. Gershun // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 30 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | We considered two types of string models: on the Riemmann space of string coordinates with null torsion and on the Riemman-Cartan space of string coordinates with constant torsion. We used the hydrodynamic approach of Dubrovin, Novikov to integrable systems and Dubrovin solutions of WDVV associativity equation to construct new integrable string equations of hydrodynamic type on the torsionless Riemmann space of chiral currents in first case. We used the invariant local chiral currents of principal chiral models for SU(n), SO(n), SP(n) groups to construct new integrable string equations of hydrodynamic type on the Riemmann space of the chiral primitive invariant currents and on the chiral non-primitive Casimir operators as Hamiltonians in second case. We also used Pohlmeyer tensor nonlocal currents to construct new nonlocal string equation. |
---|