Geometric Realizations of Bi-Hamiltonian Completely Integrable Systems
In this paper we present an overview of the connection between completely integrable systems and the background geometry of the flow. This relation is better seen when using a group-based concept of moving frame introduced by Fels and Olver in [Acta Appl. Math. 51 (1998), 161-213; 55 (1999), 127-208...
Збережено в:
Дата: | 2008 |
---|---|
Автор: | Beffa, G.M. |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2008
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Geometric Realizations of Bi-Hamiltonian Completely Integrable Systems / G.M. Beffa // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 51 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineСхожі ресурси
-
Geometric Realizations of Bi-Hamiltonian Completely Integrable Systems
за авторством: Beffa, G.M.
Опубліковано: (2008) -
Completely Integrable Contact Hamiltonian Systems and Toric Contact Structures on S²×S³
за авторством: Boyer, C.P.
Опубліковано: (2011) -
Completely Integrable Contact Hamiltonian Systems and Toric Contact Structures on S²×S³
за авторством: Boyer, C.P.
Опубліковано: (2011) -
On the Relationship between Two Notions of Compatibility for Bi-Hamiltonian Systems
за авторством: Santoprete, M.
Опубліковано: (2015) -
On the Relationship between Two Notions of Compatibility for Bi-Hamiltonian Systems
за авторством: Santoprete, M.
Опубліковано: (2015)