Wreath product of Lie algebras and Lie algebras associated with Sylow p-subgroups of finite symmetric groups
We define a wreath product of a Lie algebra L with the one-dimensional Lie algebra L1 over Fp and determine some properties of this wreath product. We prove that the Lie algebra associated with the Sylow p-subgroup of finite symmetric group Spm is isomorphic to the wreath product of m copies of...
Збережено в:
Дата: | 2005 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2005
|
Назва видання: | Algebra and Discrete Mathematics |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Wreath product of Lie algebras and Lie algebras associated with Sylow p-subgroups of finite symmetric groups / V.I. Sushchansky, N.V. Netreba // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 1. — С. 122–132. — Бібліогр.: 11 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We define a wreath product of a Lie algebra L
with the one-dimensional Lie algebra L1 over Fp and determine
some properties of this wreath product. We prove that the Lie
algebra associated with the Sylow p-subgroup of finite symmetric
group Spm is isomorphic to the wreath product of m copies of L1.
As a corollary we describe the Lie algebra associated with Sylow
p-subgroup of any symmetric group in terms of wreath product of
one-dimensional Lie algebras. |
---|