Алгебраїчні властивості ядер узагальнених нейрофункцій
Рассмотрены обобщенные нейронные элементы, определены условия реализуемости функций алгебры логики на таких элементах. Введено понятие модифицированного ядра булевых функций относительно системы характеров группы, на которой задаются функции алгебры логики. Приведены критерии принадлежности этих фун...
Saved in:
Date: | 2018 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | Ukrainian |
Published: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2018
|
Series: | Кибернетика и системный анализ |
Subjects: | |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Алгебраїчні властивості ядер узагальнених нейрофункцій / Ф.Е. Гече, О.Ю. Мулеса // Кибернетика и системный анализ. — 2018. — Т. 54, № 6. — С. 27-36. — Бібліогр.: 20 назв. — укр. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSummary: | Рассмотрены обобщенные нейронные элементы, определены условия реализуемости функций алгебры логики на таких элементах. Введено понятие модифицированного ядра булевых функций относительно системы характеров группы, на которой задаются функции алгебры логики. Приведены критерии принадлежности этих функций к классу обобщенных нейрофункций. Исследована алгебраическая структура ядер булевых нейрофункций. На основе свойств матриц толерантности установлен ряд необходимых условий реализуемости булевых функций одним обобщенным нейронным элементом. Полученные в работе результаты позволяют разработать эффективные методы синтеза целочисленных обобщенных нейронных элементов с большим числом входов, которые могут быть успешно применены в задачах компрессии и передачи информации, а также в задачах распознавания дискретных сигналов. |
---|