Hopf algebras and integrable flows related to the Heisenberg–Weil coalgebra
On the basis of the structure of Casimir elements associated with general Hopf algebras, we construct Liouville–Arnold integrable flows related to naturally induced Poisson structures on an arbitrary coalgebra and their deformations. Some interesting special cases, including coalgebra structures rel...
Saved in:
Date: | 2004 |
---|---|
Main Authors: | Blackmore, D, Prykarpatsky, A.K., Samoilenko, A.M. |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2004
|
Series: | Український математичний журнал |
Subjects: | |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Hopf algebras and integrable flows related to the Heisenberg–Weil coalgebra / D. Blackmore, A.K. Prykarpatsky, A.M. Samoilenko // Український математичний журнал. — 2004. — Т. 56, № 1. — С. 88–96. — Бібліогр.: 9 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Hopf algebras and integrable flows related to the Heisenberg–Weil coalgebra
by: Blackmore, D, et al.
Published: (2004) -
Lie-algebraic structure of (2 + 1)-dimensional Lax-type integrable nonlinear dynamical systems
by: Prykarpatsky, A.K., et al.
Published: (2004) -
Lie-algebraic structure of (2 + 1)-dimensional Lax-type integrable nonlinear dynamical systems
by: Prykarpatsky, A.K., et al.
Published: (2004) -
The Reduction Method in the Theory of Lie-Algebraically Integrable Oscillatory Hamiltonian Systems
by: Prykarpatsky, A.K., et al.
Published: (2003) -
The Reduction Method in the Theory of Lie-Algebraically Integrable Oscillatory Hamiltonian Systems
by: Prykarpatsky, A.K., et al.
Published: (2003)