Lie-algebraic structure of (2 + 1)-dimensional Lax-type integrable nonlinear dynamical systems
A Hamiltonian representation for a hierarchy of Lax-type equations on a dual space to the Lie algebra of integro-differential operators with matrix coefficients extended by evolutions for eigenfunctions and adjoint eigenfunctions of the corresponding spectral problems is obtained via some special Bå...
Saved in:
Date: | 2004 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2004
|
Series: | Український математичний журнал |
Subjects: | |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Lie-algebraic structure of (2 + 1)-dimensional Lax-type integrable nonlinear dynamical systems / A.K. Prykarpatsky, O.Ye. Hentosh // Український математичний журнал. — 2004. — Т. 56, № 7. — С. 939–946. — Бібліогр.: 21 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSummary: | A Hamiltonian representation for a hierarchy of Lax-type equations on a dual space to the Lie algebra of integro-differential operators with matrix coefficients extended by evolutions for eigenfunctions and adjoint eigenfunctions of the corresponding spectral problems is obtained via some special Båcklund transformation. The connection of this hierarchy with Lax-integrable two-metrizable systems is studied. |
---|