Lie-algebraic structure of (2 + 1)-dimensional Lax-type integrable nonlinear dynamical systems
A Hamiltonian representation for a hierarchy of Lax-type equations on a dual space to the Lie algebra of integro-differential operators with matrix coefficients extended by evolutions for eigenfunctions and adjoint eigenfunctions of the corresponding spectral problems is obtained via some special Bå...
Saved in:
Date: | 2004 |
---|---|
Main Authors: | Prykarpatsky, A.K., Hentosh, O.Ye. |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2004
|
Series: | Український математичний журнал |
Subjects: | |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Lie-algebraic structure of (2 + 1)-dimensional Lax-type integrable nonlinear dynamical systems / A.K. Prykarpatsky, O.Ye. Hentosh // Український математичний журнал. — 2004. — Т. 56, № 7. — С. 939–946. — Бібліогр.: 21 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Lie-algebraic structure of (2 + 1)-dimensional Lax-type integrable nonlinear dynamical systems
by: Prykarpatsky, A.K., et al.
Published: (2004) -
Lie-algebraic structure of the Lax-integrable (2|1+1)-dimensional supersymmetric matrix dynamical systems
by: Ye. Hentosh
Published: (2017) -
The Lax Integrable Differential-Difference Dynamical Systems on Extended Phase Spaces
by: Hentosh, O.Ye.
Published: (2010) -
The Lax Integrable Differential-Difference Dynamical Systems on Extended Phase Spaces
by: Hentosh, O.Ye.
Published: (2010) -
Bargmann type finite-dimensional reductions of the Lax integrable supersymmetric Boussinesq hierarchy and their integrability
by: Ye. Hentosh
Published: (2015)