The Lyapunov–Schmidt Approach to Studying Homoclinic Splitting in Weakly Perturbed Lagrangian and Hamiltonian Systems
We analyze the geometric structure of the Lyapunov–Schmidt approach to studying critical manifolds of weakly perturbed Lagrangian and Hamiltonian systems.
Saved in:
Date: | 2003 |
---|---|
Main Authors: | Samoilenko, A.M., Prykarpatsky, A.K., Samoylenko, V.Hr. |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2003
|
Series: | Український математичний журнал |
Subjects: | |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | The Lyapunov–Schmidt Approach to Studying Homoclinic Splitting in Weakly Perturbed Lagrangian and Hamiltonian Systems / A.M. Samoilenko, A.K. Prykarpatsky, V.Hr. Samoylenko // Український математичний журнал. — 2003. — Т. 55, № 1. — С. 66–74. — Бібліогр.: 7 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
The Lyapunov–Schmidt Approach to Studying Homoclinic Splitting in Weakly Perturbed Lagrangian and Hamiltonian Systems
by: Samoilenko, A.M., et al.
Published: (2003) -
The Reduction Method in the Theory of Lie-Algebraically Integrable Oscillatory Hamiltonian Systems
by: Prykarpatsky, A.K., et al.
Published: (2003) -
The Reduction Method in the Theory of Lie-Algebraically Integrable Oscillatory Hamiltonian Systems
by: Prykarpatsky, A.K., et al.
Published: (2003) -
On the Lagrangian and Hamiltonian aspects of infinite-dimensional dynamical systems and their finite-dimensional reductions
by: Prykarpatsky, Y.A., et al.
Published: (2005) -
On the Lagrangian and Hamiltonian aspects of infinite-dimensional dynamical systems and their finite-dimensional reductions
by: Prykarpatsky, Y.A., et al.
Published: (2005)