A generalization of an extended stochastic integral
We propose a generalization of an extended stochastic integral in the case of integration with respect to a wide class of random processes. In particular, we obtain conditions for the coincidence of the considered integral with the classical Ito stochastic integral.
Saved in:
Date: | 2007 |
---|---|
Main Authors: | Albeverio, S., Berezansky, Yu.M., Tesko, V.A. |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2007
|
Series: | Український математичний журнал |
Subjects: | |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | A generalization of an extended stochastic integral / S. Albeverio, Yu.M. Berezansky, V.A. Tesko // Український математичний журнал. — 2007. — Т. 59, № 5. — С. 588–617. — Бібліогр.: 56 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
A generalization of an extended stochastic integral
by: Albeverio, S., et al.
Published: (2007) -
Extended Stochastic Integral and Wick Calculus on Spaces of Regular Generalized Functions Connected with Gamma Measure
by: Kachanovskii, N.A.
Published: (2005) -
Extended Stochastic Integral and Wick Calculus on Spaces of Regular Generalized Functions Connected with Gamma Measure
by: Kachanovskii, N.A.
Published: (2005) -
Integration of a modified double-infinite Toda lattice by using the inverse spectral problem
by: Berezansky, Yu.M.
Published: (2008) -
Integration of a modified double-infinite Toda lattice by using the inverse spectral problem
by: Berezansky, Yu.M.
Published: (2008)