Powers of the curvature operator of space forms and geodesics of the tangent bundle
It is well known that if Г is a geodesic line of the tangent (sphere) bundle with Sasaki metric of a locally symmetric Riemannian manifold, then all geodesic curvatures of the projected curve λ=π₁₄₆₃₋₀₁ Г are constant. In this paper, we consider the case of the tangent (sphere) bundle over real, com...
Gespeichert in:
Datum: | 2004 |
---|---|
Hauptverfasser: | Sakharova, E., Yampolsky, A. |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2004
|
Schriftenreihe: | Український математичний журнал |
Schlagworte: | |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Powers of the curvature operator of space forms and geodesics of the tangent bundle / E. Sakharova, A. Yampolsky // Український математичний журнал. — 2004. — Т. 56, № 9. — С. 1231–1243. — Бібліогр.: 5 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Powers of the curvature operator of space forms and geodesics of the tangent bundle
von: Sakharova, E., et al.
Veröffentlicht: (2004) -
Totally geodesic submanifolds in the tangent bundle of a Riemannian 2-manifold
von: Yampolsky, A.
Veröffentlicht: (2005) -
Totally geodesic submanifolds in the tangent bundle of a Riemannian 2-manifold
von: Yampolsky, A.
Veröffentlicht: (2005) -
On Geodesics of Tangent Bundle with Fiberwise Deformed Sasaki Metric over Kählerian Manifold
von: Yampolsky, A.
Veröffentlicht: (2012) -
On Geodesics of Tangent Bundle with Fiberwise Deformed Sasaki Metric over Kählerian Manifold
von: Yampolsky, A.
Veröffentlicht: (2012)