Integral manifolds for semilinear evolution equations and admissibility of function spaces

We prove the existence of integral (stable, unstable, and center) manifolds for the solutions to a semilinear integral equation in the case where the evolution family (U(t, s)) t≥s has an exponential trichotomy on a half line or on the whole line, and the nonlinear forcing term f satisfies the φ-Li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2012
Hauptverfasser: Vu Thi Ngoc Ha, Nguyen Thieu Huy, Ha Phi
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2012
Schriftenreihe:Український математичний журнал
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Integral manifolds for semilinear evolution equations and admissibility of function spaces / Vu Thi Ngoc Ha, Nguyen Thieu Huy, Ha Phi // Український математичний журнал. — 2012. — Т. 64, № 6. — С. 772-796. — Бібліогр.: 37 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:We prove the existence of integral (stable, unstable, and center) manifolds for the solutions to a semilinear integral equation in the case where the evolution family (U(t, s)) t≥s has an exponential trichotomy on a half line or on the whole line, and the nonlinear forcing term f satisfies the φ-Lipschitz conditions, i.e., where φ(t) belongs to some classes of admissible function spaces. Our main method is based on the Lyapunov–Perron methods, rescaling procedures, and the techniques of using the admissibility of function spaces.