A locally compact quantum group of triangular matrices
We construct a one parameter deformation of the group of 2×2 upper triangular matrices with determinant 1 using the twisting construction. An interesting feature of this new example of a locally compact quantum group is that the Haar measure is deformed in a non-trivial way. Also, we give a comple...
Saved in:
Date: | 2008 |
---|---|
Main Authors: | Fima, P., Vainerman, L. |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2008
|
Series: | Український математичний журнал |
Subjects: | |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | A locally compact quantum group of triangular matrices / P. Fima, L. Vainerman // Український математичний журнал. — 2008. — Т. 60, № 4. — С. 564–576. — Бібліогр.: 16 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
A locally compact quantum group of triangular matrices
by: Fima, P., et al.
Published: (2008) -
Elementary Representations of the Group B₀Z of Upper-Triangular Matrices Infinite in Both Directions. I
by: Kosyak, O.V.
Published: (2002) -
Elementary Representations of the Group B₀Z of Upper-Triangular Matrices Infinite in Both Directions. I
by: Kosyak, O.V.
Published: (2002) -
Locally Compact Quantum Groups. A von Neumann Algebra Approach
by: Alfons Van Daele
Published: (2014) -
Locally Compact Quantum Groups. A von Neumann Algebra Approach
by: Alfons Van Daele
Published: (2014)