Reduction of the self-dual Yang-Mills equations. I. The Poincaré group
For the vector potential of the Yang-Mills field, we give a complete description of ansatzes invariant under three-parameterP (1, 3) -inequivalent subgroups of the Poincaré group. By using these ansatzes, we reduce the self-dual Yang-Mills equations to a system of ordinary differential equations.
Saved in:
Date: | 1995 |
---|---|
Main Authors: | Zhdanov, R.Z., Lahno, V.I., Fushchych, W.I. |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
1995
|
Series: | Український математичний журнал |
Subjects: | |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Reduction of the self-dual Yang-Mills equations. I. The Poincaré group / R.Z. Zhdanov, V.I. Lahno, W.I. Fushchych // Український математичний журнал. — 1995. — Т. 47, № 4. — С. 456–462. — Бібліогр.: 8 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Reduction of the self-dual Yang-Mills equations. I. The Poincaré group
by: Zhdanov, R.Z., et al.
Published: (1995) -
Separation of variables in the two-dimensional wave equation with potential
by: Zhdanov, R.Z., et al.
Published: (1994) -
Separation of variables in the two-dimensional wave equation with potential
by: Zhdanov, R.Z., et al.
Published: (1994) -
An Energy Gap for Complex Yang-Mills Equations
by: Huang, T.
Published: (2017) -
An Energy Gap for Complex Yang-Mills Equations
by: Huang, T.
Published: (2017)