An Improved Jackson Inequality for the Best Trigonometric Approximation
The paper presents an improved Jackson inequality and the corresponding inverse inequality for the best trigonometric approximation in terms of the moduli of smoothness equivalent to zero on the trigonometric polynomials whose degree does not exceed a certain number. The deduced inequalities are ana...
Saved in:
Date: | 2013 |
---|---|
Main Author: | Draganov, B.R. |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2013
|
Series: | Український математичний журнал |
Subjects: | |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | An Improved Jackson Inequality for the Best Trigonometric Approximation / B.R. Draganov // Український математичний журнал. — 2013. — Т. 65, № 9. — С. 1219–1226. — Бібліогр.: 18 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
An Improved Jackson Inequality for the Best Trigonometric Approximation
by: Draganov, B.R.
Published: (2013) -
An Improved Jackson Inequality for the Best Trigonometric Approximation
by: B. R. Draganov
Published: (2013) -
No Jackson-type estimates for piecewise q-monotone, q≥3, trigonometric approximation
by: D. Leviatan, et al.
Published: (2022) -
Jackson – Stechkin-type inequalities for the approximation of elements of Hilbert spaces
by: V. F. Babenko, et al.
Published: (2018) -
Trigonometric approximation of functions in generalized Lebesgue spaces with variable exponent
by: Akgün, R.
Published: (2011)