О динамике бегущих волн в системе уравнений Ван-дер-Поля с малой диффузией
The dynamics of traveling waves for a system of parabolic equations of the van-der-Pol type with small diffusion on a circle with radius r is studied. The existence, interaction, asymptotic form, and stability of these waves are analyzed. It is proved that the number of stable traveling waves increa...
Saved in:
Date: | 2007 |
---|---|
Main Author: | |
Format: | Article |
Language: | Russian |
Published: |
Видавничий дім "Академперіодика" НАН України
2007
|
Subjects: | |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | О динамике бегущих волн в системе уравнений Ван-дер-Поля с малой диффузией /О.В. Шиян // Доп. НАН України. — 2007. — N 7. — С. 27–32.— Бібліогр.: 12 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSummary: | The dynamics of traveling waves for a system of parabolic equations of the van-der-Pol type with small diffusion on a circle with radius r is studied. The existence, interaction, asymptotic form, and stability of these waves are analyzed. It is proved that the number of stable traveling waves increases with the radius r, and it is shown that the interaction of the waves satisfies the 1 : 2 principle. |
---|