The generalized De Rham-Hodge theory of Delsarte transmutation operators in multidimension case and its applications
A study of spectral and differential-geometric properties of Delsarte transmutation operators is given. Their differential geometrical and topological structure in multidimension is analyzed, the relationships with the generalized De Rham – Hodge theory of generalized differential complexes are st...
Gespeichert in:
Datum: | 2004 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2004
|
Schriftenreihe: | Нелінійні коливання |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | The generalized De Rham-Hodge theory of Delsarte transmutation operators in multidimension case and its applications / Y.A. Prykarpatsky, A.M. Samoilenko // Нелінійні коливання. — 2004. — Т. 7, № 4. — С. 516-537. — Бібліогр.: 25 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | A study of spectral and differential-geometric properties of Delsarte transmutation operators is given. Their
differential geometrical and topological structure in multidimension is analyzed, the relationships with the
generalized De Rham – Hodge theory of generalized differential complexes are stated. Some applications
to integrable dynamical systems in multidimension are presented. |
---|