On elements of high order in general finite fields

We show that the Gao's construction gives for any finite field \(F_{q^{n}}\) elements with the multiplicative order at least \(\binom{n+t-1}{t}\prod _{i=0}^{t-1}\frac{1}{d^{i}}\), where \(d=\left\lceil 2\log _{q} n\right\rceil\), \(\;t=\left\lfloor \log _{d} n\right\rfloor\).

Saved in:
Bibliographic Details
Date:2018
Main Author: Popovych, Roman
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2018
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1062
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-1062
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-10622018-04-26T02:40:33Z On elements of high order in general finite fields Popovych, Roman finite field, multiplicative order, Diophantine inequality 11T30 We show that the Gao's construction gives for any finite field \(F_{q^{n}}\) elements with the multiplicative order at least \(\binom{n+t-1}{t}\prod _{i=0}^{t-1}\frac{1}{d^{i}}\), where \(d=\left\lceil 2\log _{q} n\right\rceil\), \(\;t=\left\lfloor \log _{d} n\right\rfloor\). Lugansk National Taras Shevchenko University 2018-04-26 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1062 Algebra and Discrete Mathematics; Vol 18, No 2 (2014) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1062/584 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-04-26T02:40:33Z
collection OJS
language English
topic finite field
multiplicative order
Diophantine inequality
11T30
spellingShingle finite field
multiplicative order
Diophantine inequality
11T30
Popovych, Roman
On elements of high order in general finite fields
topic_facet finite field
multiplicative order
Diophantine inequality
11T30
format Article
author Popovych, Roman
author_facet Popovych, Roman
author_sort Popovych, Roman
title On elements of high order in general finite fields
title_short On elements of high order in general finite fields
title_full On elements of high order in general finite fields
title_fullStr On elements of high order in general finite fields
title_full_unstemmed On elements of high order in general finite fields
title_sort on elements of high order in general finite fields
description We show that the Gao's construction gives for any finite field \(F_{q^{n}}\) elements with the multiplicative order at least \(\binom{n+t-1}{t}\prod _{i=0}^{t-1}\frac{1}{d^{i}}\), where \(d=\left\lceil 2\log _{q} n\right\rceil\), \(\;t=\left\lfloor \log _{d} n\right\rfloor\).
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1062
work_keys_str_mv AT popovychroman onelementsofhighorderingeneralfinitefields
first_indexed 2025-07-17T10:30:49Z
last_indexed 2025-07-17T10:30:49Z
_version_ 1837890130431442944