Unimodality polynomials and generalized Pascal triangles

In this paper, we show that if \(P(x)=\sum_{k=0}^{m}a_{k}x^{k}\) is a polynomial with nondecreasing, nonnegative coefficients, then the coefficients sequence of \(P(x^{s}+\cdots +x+1)\) is unimodal for each integer \(s\geq 1\). This paper is an extension of Boros and Moll's result ``A criterion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Ahmia, Moussa, Belbachir, Hacène
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/193
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Beschreibung
Zusammenfassung:In this paper, we show that if \(P(x)=\sum_{k=0}^{m}a_{k}x^{k}\) is a polynomial with nondecreasing, nonnegative coefficients, then the coefficients sequence of \(P(x^{s}+\cdots +x+1)\) is unimodal for each integer \(s\geq 1\). This paper is an extension of Boros and Moll's result ``A criterion for unimodality'', who proved that the polynomial \(P(x+1)\) is unimodal.