\(p\)-Conjecture for tame automorphisms of \(\mathbb{C}^3\)
The famous Jung-van der Kulk [4, 11] theorem says that any polynomial automorphism of \(\mathbb{C}^2\) can be decomposed into a finite number of affine automorphisms and triangular automorphisms, i.e. that any polynomial automorphism of \(\mathbb{C}^2\) is a tame automorphism. In [5] there is a conj...
Gespeichert in:
Datum: | 2025 |
---|---|
Hauptverfasser: | Holik, Daria, Karaś, Marek |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Lugansk National Taras Shevchenko University
2025
|
Schlagworte: | |
Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2349 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete MathematicsÄhnliche Einträge
-
A note on multidegrees of automorphisms of the form \((\exp D)_{\star}\)
von: Karaś, M., et al.
Veröffentlicht: (2023) -
An identity on automorphisms of Lie ideals in prime rings
von: Rehmam, N.
Veröffentlicht: (2022) -
On the finite state automorphism group of a rooted tree
von: Lavrenyuk, Yaroslav
Veröffentlicht: (2018) -
The structure of automorphism groups of semigroup inflations
von: Kudryavtseva, Ganna
Veröffentlicht: (2018) -
On the group of automorphisms of the semigroup \(\mathbf{B}_{\mathbb{Z}}^{\mathscr{F}}\) with the family \(\mathscr{F}\) of inductive nonempty subsets of \(\omega\)
von: Gutik, O., et al.
Veröffentlicht: (2023)