\((G,\phi)\)-crossed product on \((G,\phi)\)-quasiassociative algebras
The notions of \((G,\phi)\)-crossed product and quasicrossed system are introduced in the setting of \((G,\phi)\)-quasiassociative algebras, i.e., algebras endowed with a grading by a group \(G\), satisfying a ``quasiassociative'' law. It is presented two equivalence relations, one for qua...
Gespeichert in:
Datum: | 2017 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Lugansk National Taras Shevchenko University
2017
|
Schlagworte: | |
Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/283 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete MathematicsZusammenfassung: | The notions of \((G,\phi)\)-crossed product and quasicrossed system are introduced in the setting of \((G,\phi)\)-quasiassociative algebras, i.e., algebras endowed with a grading by a group \(G\), satisfying a ``quasiassociative'' law. It is presented two equivalence relations, one for quasicrossed systems and another for \((G,\phi)\)-crossed products. Also the notion of graded-bimodule in order to study simple \((G,\phi)\)-crossed products is studied. |
---|