Generalized symmetric rings

In this paper, we introduce a class of rings which is a generalization of symmetric rings. Let \(R\) be a ring with identity.  A ring \(R\) is called  central symmetric if for any \(a\), \(b, c\in R\),  \(abc = 0\) implies bac belongs to the center of \(R\).  Since every symmetric ring is central sy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Kafkas, G., Ungor, B., Halicioglu, S., Harmanci, A.
Format: Artikel
Sprache:English
Veröffentlicht: Lugansk National Taras Shevchenko University 2018
Schlagworte:
Online Zugang:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/683
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-683
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-6832018-04-04T09:31:27Z Generalized symmetric rings Kafkas, G. Ungor, B. Halicioglu, S. Harmanci, A. symmetric rings, central reduced rings, central symmetric rings, central reversible rings, central semicommutative rings, central Armendariz rings, 2-primal rings 13C99, 16D80, 16U80 In this paper, we introduce a class of rings which is a generalization of symmetric rings. Let \(R\) be a ring with identity.  A ring \(R\) is called  central symmetric if for any \(a\), \(b, c\in R\),  \(abc = 0\) implies bac belongs to the center of \(R\).  Since every symmetric ring is central symmetric, we study sufficient conditions for central symmetric rings to be symmetric.  We prove that some results of symmetric rings can be extended to central symmetric rings for this general settings. We show  that every central reduced ring is central symmetric, every central symmetric ring is central reversible, central semmicommutative, 2-primal, abelian and so directly finite. It is proven that the polynomial ring \(R[x]\) is central symmetric if and only if the Laurent polynomial ring \(R[x, x^{-1}]\) is central symmetric. Among others, it is shown that for a right principally projective ring \(R\), \(R\) is central symmetric if and only if \(R[x]/(x^n)\) is central Armendariz, where \(n\geq 2~\) is a natural number and \((x^n)\) is the ideal generated by \(x^n\). Lugansk National Taras Shevchenko University 2018-04-04 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/683 Algebra and Discrete Mathematics; Vol 12, No 2 (2011) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/683/217 Copyright (c) 2018 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2018-04-04T09:31:27Z
collection OJS
language English
topic symmetric rings
central reduced rings
central symmetric rings
central reversible rings
central semicommutative rings
central Armendariz rings
2-primal rings
13C99
16D80
16U80
spellingShingle symmetric rings
central reduced rings
central symmetric rings
central reversible rings
central semicommutative rings
central Armendariz rings
2-primal rings
13C99
16D80
16U80
Kafkas, G.
Ungor, B.
Halicioglu, S.
Harmanci, A.
Generalized symmetric rings
topic_facet symmetric rings
central reduced rings
central symmetric rings
central reversible rings
central semicommutative rings
central Armendariz rings
2-primal rings
13C99
16D80
16U80
format Article
author Kafkas, G.
Ungor, B.
Halicioglu, S.
Harmanci, A.
author_facet Kafkas, G.
Ungor, B.
Halicioglu, S.
Harmanci, A.
author_sort Kafkas, G.
title Generalized symmetric rings
title_short Generalized symmetric rings
title_full Generalized symmetric rings
title_fullStr Generalized symmetric rings
title_full_unstemmed Generalized symmetric rings
title_sort generalized symmetric rings
description In this paper, we introduce a class of rings which is a generalization of symmetric rings. Let \(R\) be a ring with identity.  A ring \(R\) is called  central symmetric if for any \(a\), \(b, c\in R\),  \(abc = 0\) implies bac belongs to the center of \(R\).  Since every symmetric ring is central symmetric, we study sufficient conditions for central symmetric rings to be symmetric.  We prove that some results of symmetric rings can be extended to central symmetric rings for this general settings. We show  that every central reduced ring is central symmetric, every central symmetric ring is central reversible, central semmicommutative, 2-primal, abelian and so directly finite. It is proven that the polynomial ring \(R[x]\) is central symmetric if and only if the Laurent polynomial ring \(R[x, x^{-1}]\) is central symmetric. Among others, it is shown that for a right principally projective ring \(R\), \(R\) is central symmetric if and only if \(R[x]/(x^n)\) is central Armendariz, where \(n\geq 2~\) is a natural number and \((x^n)\) is the ideal generated by \(x^n\).
publisher Lugansk National Taras Shevchenko University
publishDate 2018
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/683
work_keys_str_mv AT kafkasg generalizedsymmetricrings
AT ungorb generalizedsymmetricrings
AT halicioglus generalizedsymmetricrings
AT harmancia generalizedsymmetricrings
first_indexed 2025-07-17T10:33:50Z
last_indexed 2025-07-17T10:33:50Z
_version_ 1837889938787401728