On tame semigroups generated by idempotents with partial null multiplication
Let \(I\) be a finite set without \(0\) and \(J\) a subset in \(I\times I\) without diagonal elements \((i,i)\). We define \(S(I,J)\) to be the semigroup with generators \(e_i\), where \(i\in I\cup 0\), and the following relations: \(e_0=0\); \(e_i^2=e_i\) for any \(i\in I\); \(e_ie_j=0\) for an...
Saved in:
Date: | 2018 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Published: |
Lugansk National Taras Shevchenko University
2018
|
Subjects: | |
Online Access: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/824 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Algebra and Discrete Mathematics |