On fully wild categories of representations of posets
Assume that \(I\) is a finite partially ordered set and \(k\) is a field. We prove that if the category \(\mbox{ prin}(kI)\) of prinjective modules over the incidence \(k\)-algebra \(kI\) of \(I\) is fully \(k\)-wild then the category \({\bf fpr}(I,k)\) of finite dimensional \(k\)-representations of...
Gespeichert in:
Datum: | 2018 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Lugansk National Taras Shevchenko University
2018
|
Schlagworte: | |
Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/899 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete MathematicsZusammenfassung: | Assume that \(I\) is a finite partially ordered set and \(k\) is a field. We prove that if the category \(\mbox{ prin}(kI)\) of prinjective modules over the incidence \(k\)-algebra \(kI\) of \(I\) is fully \(k\)-wild then the category \({\bf fpr}(I,k)\) of finite dimensional \(k\)-representations of \(I\) is also fully \(k\)-wild. A key argument is a construction of fully faithful exact endofunctors of the category of finite dimensional \(k\langle x,y\rangle\)-modules, with the image contained in certain subcategories. |
---|