On fully wild categories of representations of posets
Assume that \(I\) is a finite partially ordered set and \(k\) is a field. We prove that if the category \(\mbox{ prin}(kI)\) of prinjective modules over the incidence \(k\)-algebra \(kI\) of \(I\) is fully \(k\)-wild then the category \({\bf fpr}(I,k)\) of finite dimensional \(k\)-representations of...
Збережено в:
Дата: | 2018 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Lugansk National Taras Shevchenko University
2018
|
Теми: | |
Онлайн доступ: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/899 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Algebra and Discrete Mathematics |
Репозитарії
Algebra and Discrete MathematicsРезюме: | Assume that \(I\) is a finite partially ordered set and \(k\) is a field. We prove that if the category \(\mbox{ prin}(kI)\) of prinjective modules over the incidence \(k\)-algebra \(kI\) of \(I\) is fully \(k\)-wild then the category \({\bf fpr}(I,k)\) of finite dimensional \(k\)-representations of \(I\) is also fully \(k\)-wild. A key argument is a construction of fully faithful exact endofunctors of the category of finite dimensional \(k\langle x,y\rangle\)-modules, with the image contained in certain subcategories. |
---|