On fully wild categories of representations of posets
Assume that \(I\) is a finite partially ordered set and \(k\) is a field. We prove that if the category \(\mbox{ prin}(kI)\) of prinjective modules over the incidence \(k\)-algebra \(kI\) of \(I\) is fully \(k\)-wild then the category \({\bf fpr}(I,k)\) of finite dimensional \(k\)-representations of...
Gespeichert in:
Datum: | 2018 |
---|---|
1. Verfasser: | Kasjan, Stanislaw |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Lugansk National Taras Shevchenko University
2018
|
Schlagworte: | |
Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/899 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete MathematicsÄhnliche Einträge
-
On representation type of a pair of posets with involution
von: Bondarenko, Vitalij M.
Veröffentlicht: (2018) -
Dimensions of finite type for representations of partially ordered sets
von: Drozd, Yuriy A., et al.
Veröffentlicht: (2018) -
On modular representations of semigroups \(S_p\times T_p\)
von: Bondarenko, Vitaliy M., et al.
Veröffentlicht: (2018) -
On large indecomposable modules, endo-wild representation type and right pure semisimple rings
von: Simson, Daniel
Veröffentlicht: (2018) -
Categorical properties of some algorithms of differentiation for equipped posets
von: Gaviria, I. D. M., et al.
Veröffentlicht: (2022)