Arithmetic properties of exceptional lattice paths

For a fixed real number \(\rho>0\),  let \(L\) be an affine line of slope \(\rho^{-1}\) in \(\mathbb{R}^2\). We show that the closest approximation of \(L\) by a path \(P\) in \(\mathbb{Z}^2\) is unique, except in one case, up to integral translation. We study this exceptional case. For irrat...

Full description

Saved in:
Bibliographic Details
Date:2018
Main Author: Rump, Wolfgang
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2018
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/901
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Description
Summary:For a fixed real number \(\rho>0\),  let \(L\) be an affine line of slope \(\rho^{-1}\) in \(\mathbb{R}^2\). We show that the closest approximation of \(L\) by a path \(P\) in \(\mathbb{Z}^2\) is unique, except in one case, up to integral translation. We study this exceptional case. For irrational \(\rho\), the projection of \(P\) to \(L\) yields two quasicrystallographic tilings in the sense of Lunnon and Pleasants [5]. If \(\rho\) satisfies an equation \(x^2=mx+1\) with \(m\in\mathbb{Z}\), both quasicrystals are mapped to each other by a substitution rule. For rational \(\rho\), we characterize the periodic parts of \(P\) by geometric and arithmetic properties, and exhibit a relationship to the hereditary algebras \(H_{\rho}(K)\) over a field \(K\) introduced in a recent proof of a conjecture of Roiter.